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Abstract
A study of the performance of Thomas–Fermi and linear response theories in the
case of a two-dimensional periodic model system is presented. The calculated
density distribution and total energy per unit cell compare very well with exact
results except when there is a small number of particles per cell, even though
the potential has narrow tight-binding bands. The results supplement earlier
findings of Koivisto and Stott for a localized impurity in a two-dimensional
uniform gas.

PACS number: 71.15.Mb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The non-interacting electron gas has some interesting features for two dimensions which have
consequences in density functional theory. Calculations have been reported for the electron
distribution around a model impurity in a uniform, non-interacting two-dimensional electron
gas for various Fermi energies [1–3], and for the total number of displaced particles and the
total energy [3]. The results of these essentially exact calculations are in very good agreement
with the results of linear response theory and the Thomas–Fermi (TF) approach even for
impurity potentials strong enough to bind several electrons. This good agreement was first
interpreted as a feature of linear response theory (LRT) [1, 2], but two dimensions played
no special role in the argument. Later, it was argued that the success of the approximations
depended not so much on the properties of linear response (LR) but on a special feature of all
density response functions in two dimensions [3].

The TF approach gave similar and usually better agreement with the exact results than
LRT and can be systematically corrected by adding terms that depend on the density gradients
using the method of Kirzhnits [4–6]. This method obtains the non-interacting kinetic energy
functional Ts[n] of the electron density n(�r) as an expansion in density gradients with the
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leading term being the TF result. The calculations are straightforward but very tedious. For
three dimensions, corrections as far as the sixth order in gradients have been found [4, 5, 7],
and results are not encouraging. Successive terms in the expansion n[V ] in gradients of the
potential V (�r) contain increasing powers of 1/

√
EF − V (�r) and the series diverges badly for

EF ∼ V (�r), near the classical turning point. However, the situation is very different in two
dimensions for it was shown [3, 6, 8–10] that for D = 2 all density gradient corrections to the
TF term calculated using the method of Kirzhnits [4–6] vanish at zero temperature.

The systems previously considered consisted of a single impurity in an otherwise uniform
two-dimensional (2D) gas, and it is of interest to investigate the validity of the TF approach and
LRT for a periodic 2D crystal, a model system more widely applicable. Further investigation of
the kinetic energy density functional for a 2D system of electrons may also lead to successful
approximations for 3D systems, which could be used in orbital-free-like methods for the
simulations of large systems, which use an explicit density functional for the electron kinetic
energy.

2. Model

2.1. Exact solution

The model we investigate is one first introduced and treated by Brillouin [12], Morse [13],
MacColl [14] and Slater [15]. It consists of a two-dimensional electron gas in the presence of
a separable periodic potential

V (�r) = 2W1

(
1 − cos

(
2πx1

c1

))
+ 2W2

(
1 − cos

(
2πx2

c2

))
, (1)

where xi are the 2D cartesian coordinates, Wi are the potential strength parameters and ci are
the unit cell parameters of a 2D rectangular unit cell; all in atomic units.

The Schrödinger equation for this problem separates, and reduces to one-dimensional
Mathieu–Floquet equations [11] of the form

F ′′
n,νi

(zi) + (an(νi) − 2qi cos(2zi))Fn,νi
(zi) = 0, i = 1, 2; (2)

where Fn,νi
(zi) is a solution for the band index n in terms of reduced coordinates zi , potential

strength qi, wave vector νi and eigenvalues an(νi). The relationships between reduced variables
and the coordinates xi, potential strength Wi, unit cell parameters ci and wave vector ki of the
system are zi = πxi/ci , νi = πki/ci , an(νi) = 2c2

i (εn(ki) − 2Wi)/π
2 and qi = −2c2

i Wi/π
2.

The wavefunction and eigenvalue of the (lm)-state with wave vector �k are respectively

φlm(�k, �r) = Fl,ν1(k1)(πx1/c1)Fm,ν2(k2)(πx2/c2) (3)

and

εlm(�k) = π2/2
(
al(π/c1k1)/c

2
1 + am(π/c2k2)

/
c2

2

)
+ 2(W1 + W2). (4)

The ground-state electron density given by the sum over occupied states up to the Fermi
energy, EF, is

n(�r) = �

2π2

∑
lm

∫
BZ

d2�k |φlm(�k, �r)|2�(εlm(�k) − EF ), (5)

where � is the area of the unit cell, and �(x) is the step function. The total number of particles
in the unit cell is N = ∫

�
d2rn(�r), and the total energy per unit cell is

E = �

2π2

∑
lm

∫
BZ

d2�k εlm(�k)�(εlm(�k) − EF ). (6)

2



J. Phys. A: Math. Theor. 43 (2010) 155203 L Calderı́n and M J Stott

The object now is to compare the exact density distribution and total energy with the
corresponding results calculated within linear response theory and the Thomas–Fermi
approximation all for the same number of particles.

2.2. Linear response theory

In this approach [17] a uniform, non-interacting electron gas of density n̄ is perturbed by the
potential V (�r) and to first order, or in the so-called linear response theory, the density is given
by

nLR(�r) = n̄ +
1

�

∑
�q �=0

χ̃ (�q)Ṽ (�q) exp(−i�q · �r) (7)

where Ṽ (�q) is the Fourier transform of the potential, and χ̃ (�q) is the linear density response
function, which in two dimensions is

χ̃ (�q) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

π
if q < 2kF

− 1

π

(
1 −

√
x2 − 1

x

)
if q > 2kF

(8)

where kF = √
2πn̄ is the Fermi wave vector of the unperturbed gas and x = q/2kF . The total

ground state energy consistent with LRT is

ELR = π

2
n̄2� +

n̄

2

∫
d2r V (�r) +

1

2

∫
d2r nLR(�r) V (�r). (9)

If the �q-vectors of V (�q) all lie within a circle of radius 2kF , then the LR density reduces
to

nLR(�r) = n̄ − 1

π�

∑
�q �=0

Ṽ (�q) exp(−i�q · �r) (10)

= πn̄ + V̄ − V (�r)
π

, (11)

where V̄ is the average potential

V̄ ≡ 1

�

∫
�

d2r V (�r). (12)

The corresponding LR total energy is given by

ELR = π�

2
n̄2 + �V̄ n̄ +

�

2π
(V 2 − V 2), (13)

where V 2 ≡ ∫
�

d2r V 2(�r) d2r/�.

For the periodic potential given by (1) the density is

nLR(�r) = n̄ − 2W1 χ̃

(
2π

c1

)
cos

(
2π

c1
x1

)
− 2W2 χ̃

(
2π

c2

)
cos

(
2π

c2
x2

)
(14)

and the total number of particles per cell is N = �n̄. The total energy per cell is

ELR = πn̄2�

2
+ 2n̄�(W1 + W2) + �

(
W 2

1 χ̃

(
2π

c1

)
+ W 2

2 χ̃

(
2π

c2

))
. (15)
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If the wave vectors of the perturbing potential are such that π/c1 and π/c2 lie inside the Fermi
circle, then

n̄ >
π

2
max(1/c1, 1/c2)

2. (16)

In this case the density and total energy become

nLR(�r) = n̄ +
2W1

π
cos

(
2π

c1
x1

)
+

2W2

π
cos

(
2π

c2
x2

)
(17)

and

ELR = πn̄2�

2
+ 2n̄�(W1 + W2) − �

(
W 2

1 + W 2
2

)
π

, (18)

respectively.

2.3. Thomas–Fermi approximation

Within the Thomas–Fermi approximation for the kinetic energy the particle density is

nTF(�r) = EF − V (�r)
π

�[V (�r) − EF ], (19)

and EF is given in terms of the total number of particles per cell through N = ∫
�

d2r nTF(�r).
The total energy per cell is

ETF = π

2

∫
�

d2�r [nTF(�r)]2 +
∫

�

d2�r nTF(�r) V (�r). (20)

Now we consider the case of the Fermi energy above the potential so that EF > Vmax; we
have

nTF(�r) = EF − V (�r)
π

, (21)

which by integration over the cell gives for EF in terms of the number of particles

EF = πn̄ + V̄ . (22)

Using (22) the condition EF > Vmax becomes

n̄ >
(Vmax − V̄ )

π
. (23)

Using (22) for EF in (21) the expression for the TF density is the same as nLR when
n̄ > q2

max

/
8π given by (11), and the total energy coincides with ELR ((20)). We see that both

LRT and TF give simple results for the density and the total energy when certain conditions
are met: n̄ > q2

max

/
8π for LRT and EF > Vmax for TF, and when both conditions are met the

results are identical. This is not unexpected since LRT assumes a weak potential and when
the potential is also slowly varying (π max(1/c1, 1/c2) < kF ) the conditions are met for TF
to work for a weak potential. However, for 2D the conditions are met abruptly because of the
special form of χ̃(�q).

For the potential given by (1) and EF > Vmax the TF Fermi energy is

EF = πn̄ + 2(W1 + W2); (24)

the LRT results for the density (17) and total energy (18) are obtained and the condition
EF > Vmax becomes

n̄ >
2(W1 + W2)

π
. (25)
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(a)

(b)

(c)

Figure 1. General view of the 2D periodic potential. (a) The system of reference (b) unit cell
parameters and (c) irreducible Brillouin zone are shown on the left. The letters at the corners of
the Brillouin zone label the following points: 	 = (0, 0), X = (π/c1, 0), M = (π/c1, π/c2) and
P = (0, π/c2). A unit cell related to the potential is shown on the right as well as the following
values of the potential: A: V = 0, B: V = 4W1, C: V = 4(W1 + W2) and D: V = 4W2.

2.4. Calculations

Calculations of the exact, LR and TF densities and total energies as functions of the number
of particles per cell have been performed for square and rectangular lattices. The real
space integrals involved in both the exact and TF calculations used the trapezoidal rule with
grids of 20 × 20 points in the unit cell. The exact calculations also required integrals over
reciprocal space. These were performed sampling 20 × 20 points in the Brillouin zone with
the Methfessel–Paxton S10 function [16] with a width of 0.01. Enough energy bands were
considered to guarantee that all band overlaps were accounted for in the sums over bands in
(5) and (6). For the largest number of electrons 81 bands were needed.

3. Results

An example of the periodic 2D potential is shown in figure 1 for a general rectangular lattice.
The global minimum and zero of the potential is at the corners of the rectangular unit cell and
its global maximum of 4(W1 + W2) is at the middle of the unit cell. There are saddle points
with values of 4Wi at the centers of the sides of the unit cell which provide the barriers for an
electron moving from one cell to the next.

The exact band structure is shown in figure 2 for a rectangular lattice with unit cell
parameters c1 = 4.443 and c2 = 3.141, and potential strengths W1 = 1 and W2 = 2. The
corresponding density of states (DOS) with a Gaussian broadening to help visibility is also
shown. The very narrow band at ∼2.7 Ha involves tunneling through a classically forbidden
region between cells in all directions. The band at ∼4.5 Ha, slightly above the 4 Ha saddle
point at B, also shows very little dispersion. The next higher bands show dispersion along the
	X directions due to propagation in the x1 direction over the lower saddle point at B. There is
a small band gap at ∼6 Ha but there are band overlaps at all energies above this.

Narrow localized states are seen below the potential barriers along the sides, while above
the bands show a free electron-like character, which is more accentuated for higher Fermi
energies. There is more dispersion along the 	–X and M–P lines than along X–M and P–	

lines because the former are in the x1 direction in real space, while the latter are along x2.
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Figure 2. Band structure and DOS for a rectangular lattice c1 = 4.443 and c2 = 3.141, and
potential strengths W1 = 1 and W2 = 2.

Therefore, the greater dispersion along the 	–X and X–P lines is a consequence of the lower
potential barrier along that direction (figure 1, label B) than along x2 (figure 1, label D). The
DOS also shows two narrow, tightly bound states—most of the widths are artificial due to the
sampling—and an increasingly free particle character above as evidenced by the flat DOS.

Illustrations of density distributions are shown in figures 3 and 4. The exact, LRT and
TF densities are shown for two cases. The first, figure 3 is for a small number of particles
(≈2) in tightly bound states. The exact and TF results have islands concentrated in the
corners of the unit cell where the potential is a minimum. Whereas the exact density has
a smooth distribution between the islands, the TF density falls abruptly to zero for values
of the potential below its Fermi energy. In contrast, LRT fails to account for the tightly
bound states. It becomes negative at the center of the cell around the potential maximum,
and the islands are misshapen. The case with a larger number of particles (≈30) is shown in
figure 4. The TF Fermi energy is above the potential maximum and the TF and LRT densities
are identical and quantitatively and qualitatively very similar to the exact density.

In order to compare the densities in more detail we show in figure 5 the standard deviation
of the approximate densities (na), with respect to the exact one (ne) over the rectangular unit
cell as functions of the average density:

σ =
√∫

�

d2r(ne − na)2/�. (26)

The results show TF performing better than LRT for small numbers of particles as noted
earlier, but the discrepancies for both are small as EF for the exact model approaches the
potential maximum and diminish rapidly as EF increases further. TF and LRT give identical
densities for n̄ > 2(W1 + W2)/π .

The total energy calculated as a function of the number of particles for a square lattice
with a unit cell parameter of 4.443 and potential strength of 1 is shown in figure 6(a), and for a

6
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(a) Exact density (b) LR density (c) TF density

Figure 3. Typical densities for a small average density, n̄ = 0.07, which for the exact model
corresponds to a Fermi energy EF = 2.8 which is below the maximum of the potential.

(a) Exact density (b) LR density (c) TF density

Figure 4. Typical densities for a large average density, n̄ = 2.1, which for the exact model
corresponds to a Fermi energy EF = 12.5 which is above the maximum of the potential.

Figure 5. Standard deviation, σ , of the approximate densities respect to the exact one for different
mean particle density for the the rectangular lattice (c1 = 4.443, c2 = 3.141, W1 = 1, W2 = 2).
The Fermi energy of the exact system is also shown with a line marking the maximum of the
potential at 12 Ha.

rectangular lattice with unit cell parameters c1 = 4.443 and c2 = 3.142 and potential strengths
W1 = 1 and W2 = 2 in figure 6(b). The exact results as well as the LRT and TF results are

7
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(a) c1 = 4.443 and W1 = 1. (b) c1 = 4.443, c2 = 3.141, W1 = 1 and W2 = 2.

Figure 6. Total energy versus average density for (a) a square (b) and rectangular two-dimensional
lattices.

shown. There is very good agreement between the exact and the approximate results even for
Fermi energies of the exact model below the global maximum of the potential at 12 Ha. The
slightly poorer agreement for the rectangular lattice is due to less band overlap.

4. Discussion and conclusions

Previous numerical studies [3] of the ground state of a localized impurity in a 2D noninteracting
uniform gas showed that the impurity energy, displaced density distribution and the number
of displaced particles calculated within TF and LRT were in very good agreement with exact
results. This prompted the present work which investigated if there might be the same
agreement for an extended 2D system. A 2D model with a periodic sinusoidal potential
has been studied and the particle density distribution and total energy as functions of the
mean density calculated within the LRT and TF approximations are found to be in very good
agreement with the exact quantities except for LRT when there is a small number of particles
per unit cell. For example, the LRT density is negative in some of the cell. Moreover,
the two sets of approximate quantities are identical for some mean density which depends
on the strength of the potential and its Fourier wave vectors, and converges very rapidly
onto the exact results as the mean density increases further.

Corrections to LRT involve the quadratic and higher order response functions that for
2D systems have been studied by Zhang [18]. When the potential has no short wavelength
Fourier components and EF > Vmax, TF and LRT results coincide and TF can be corrected
to include density inhomogenieties by adding gradient corrections using, for instance, the
Kirzhnits approach [4–6]. But, for 2D all density gradient corrections calculated in this
fashion vanish at zero temperature [3, 6, 8–10]. This is not to claim that TF is exact for 2D
because we know that it misses Fermi surface effects such as Friedel oscillations and the effects
of short wavelength variations in the potential, but the vanishing of the gradient corrections
may account for the success of TF for 2D, and of LRT when they coincide.

Both potentials studied in some detail: the Gaussian impurity potential earlier [3] and
the sinusoidal periodic potential, here, are smooth (the Fourier components of the Gaussian
potential decay very rapidly and the sinusoidal potential has no Fourier components for
q > π max(1/c1, 1/c2)). It comes to mind that TF may work well if the potential is free of
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singularities such as a Coulomb singularity or a discontinuity, and 2D systems may not be as
special as they appear from the present results. A supporting point may be that the Kirzhnits
method [4–6] begins by finding expansions of the density and the kinetic energy in gradients of
the potential and then eliminates these to obtain an expansion of the kinetic energy in gradients
of the density. The intermediate step involving gradients of the potential is problematic if not
all gradients exist, again, such as for a Coulomb singularity or a discontinuous potential, but
there may be methods that avoid this intermediate step.

Further investigation of the validity of the TF approximation for 2D is warranted. The
demonstrated accuracy of TF for a localized impurity [1–3] and now for an extended periodic
system is approaching useful levels. The formulation of corrections to TF accounting for
short wavelength components of the potential and Fermi surface effects would allow a very
simple orbital-free ab initio simulation method for 2D systems, but might also shed light on
properties of an explicit density functional of the electron kinetic energy for 3D systems.
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